£
可计算经济学

精装

可计算经济学

9781843762393 Edward Elgar Publishing
由K. Vela Velupillai编辑,意大利特伦托大学经济学教授,意大利特伦托大学经济学教授Stefano Zambelli和Stephen Kinsella,爱尔兰利默里克大学经济学讲师
发布日期:2012 ISBN:978 1 84376 239 3 Extent:816 pp
可计算的经济学是一个新兴的领域的研究h which has been given much attention by scholars in recent decades. In this authoritative collection, the editors successfully bring together the seminal papers of computable economics from the last sixty years and encompass the works of some of the most influential researchers in this area. Topics covered in this timely volume include the foundations of computable economics, classics of computable choice theory, computable macroeconomics and computable and social choice theory. The book is enhanced with a comprehensive introduction by the editors and will serve as an essential source of reference for students and researchers in the field.

Copyright & permissions

推荐给图书馆员

Your Details

Privacy Policy

Librarian Details

Download leaflet

Print page

更多信息
贡献者
Contents
更多信息
可计算的经济学是一个新兴的领域的研究h which has been given much attention by scholars in recent decades. In this authoritative collection, the editors successfully bring together the seminal papers of computable economics from the last sixty years and encompass the works of some of the most influential researchers in this area. Topics covered in this timely volume include the foundations of computable economics, classics of computable choice theory, computable macroeconomics and computable and social choice theory. The book is enhanced with a comprehensive introduction by the editors and will serve as an essential source of reference for students and researchers in the field.
贡献者
38篇文章,可追溯到1952年至2009年
贡献者包括:L。Anderlini,D。Bridges,D。Canning,S。Kleene,A。Lewis,R。Mantel,K。Prasad,H。Putnam,M。Richter,H。Simon
Contents
Contents:

致谢

Introduction K. Vela Velupillai, Stephen Kinsella and Stefano Zambelli

一部分可计算经济学基础
1。Stephen C. Kleene (1981), ‘Origins of Recursive Function Theory’
2.上午图灵(1954),“可解决和无法解决的问题”

PART II MATHEMATICAL AND METHODOLOGICAL FOUNDATIONS OF COMPUTABLE ECONOMICS
3. L.E.J.Brouwer(1952),“直觉主义者对球体上的固定点定理的校正”
4. Allen Newell,J.C。Shaw和Herbert A. Simon(1958),“解决人类问题理论的要素”
5.罗纳德·哈罗普(Ronald Harrop,1961),“关于有限集的递归”
6. H. Steinhaus(1965),“游戏,非正式演讲”
7. Hilary Putnam ([1967] 1975), ‘The Mental Life of Some Machines’
8. Douglas S. Bridges (1999), ‘Constructive Methods in Mathematical Economics’

第三部分可计算选择理论的经典
9. Douglas S. Bridges (1982), ‘Preference and Utility: A Constructive Development’
10. Alain A. Lewis(1985),“关于选择功能的有效计算实现”
11. Alain A. Lewis(1985),“最低递归代表的选择功能”
12. Berc Rustem and Kumaraswamy Velupillai (1990), ‘Rationality, Computability, and Complexity’
13. Gregory Lilly(1993),“递归和偏好秩序”

第四部分可计算的游戏理论
14. Michael O. Rabin(1957),“获胜策略的有效计算性”
15. Luca Anderlini (1990), ‘Some Notes on Church’s Thesis and the Theory of Games’
16. Kislaya Prasad(1991),“无限游戏中NASH平衡的计算和随机性”
17.大卫·坎宁(David Canning)(1992年),“理性,计算性和纳什均衡”
18. Kislaya Prasad(1997),“关于纳什均衡的计算性”
19. K.(Vela)Velupillai(1997),“有关(算术)游戏中的可计算性和复杂性的说明说明”
20. Marcelo Tsuji,牛顿C.A.Da Costa和Francisco A. Doria(1998),“游戏理论的不完整”

PART V COMPUTABLE GENERAL EQUILIBRIUM THEORY
21. Rolf Ricardo Mantel(1968),“朝着竞争经济中存在平衡的建设性证明”
22. Hirofumi Uzawa (1962), ‘Walras’ Existence Theorem and Brouwer’s Fixed-Point Theorem’
23. Herbert E. Scarf(1984),“平衡价格的计算”
24. K. Vela Velupillai (2006), ‘Algorithmic Foundations of Computable General Equilibrium Theory’
25. Yasuhito Tanaka (2008), ‘Undecidability of Uzawa Equivalence Theorem and LLPO (Lesser Limited Principle of Omniscience)’

第六部分可计算的宏观经济学
26. Stephen E. Spear(1989),“在计算性约束下学习合理期望”
27. Francesco Luna (1997), ‘Learning in a Computable Setting. Applications of Gold’s Inductive Inference Model’
28. Stefano Zambelli(2004),“通过思想的想法产生:图灵机的隐喻”
29. K. Vela Velupillai (2007), ‘The Impossibility of an Effective Theory of Policy in a Complex Economy’

第七部分可计算的微观经济学
30. Alain A. Lewis(1991),“关于Edgeworth猜想的渐近验证的有效内容”
31. Marcel K. Richter and Kam-Chau Wong (1999), ‘Non-Computability of Competitive Equilibrium’
32. K. Vela Velupillai(2009),“经济理论中的不可兼容和不可证明性”

PART VIII COMPUTABLE AND SOCIAL CHOICE THEORY
33. Alain A. Lewis (1988), ‘An Infinite Version of Arrow’s Theorem in the Effective Setting’
34. Jerry S. Kelly(1988),“社会选择和计算复杂性”
35. H. Reiju Mihara (1997), ‘Arrow’s Theorem and Turing Computability’

PART IX EXOTICA
36. A.R.D.Mathias(1992),“布尔巴基的无知”
37.卢卡·安德利尼(Luca Anderlini)和莱昂纳多·费利(Leonardo Felli)(1994),“不完整的书面合同:不可描述的自然状态”
38. K. Vela Velupillai(2005),“经济学数学的无理效应”

最新出版物

我的车